Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 680
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Am J Bot ; 111(4): e16309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584339

ABSTRACT

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Subject(s)
Flowers , Hybridization, Genetic , Opuntia , Pollination , Reproductive Isolation , Seeds , Self-Incompatibility in Flowering Plants , Sympatry , Self-Incompatibility in Flowering Plants/physiology , Flowers/physiology , Seeds/physiology , Opuntia/physiology , Reproduction , Pollen/physiology , Species Specificity , Apomixis/physiology
2.
Braz J Biol ; 84: e279806, 2024.
Article in English | MEDLINE | ID: mdl-38536976

ABSTRACT

The proper establishment of plants is essential for the efficient use of resources such as water and light. Besides, even after seed storage and sowing the uniform establishment of plants is essential for their success. Crotalaria ochroleuca and Crotalaria spectabilis are important medicinal plants with poor seed germination rate, occasionally. The effects of seed priming in both C. ochroleuca and C. spectabilis were evaluated in seed performance even after seeds storage for up 90-days. Experimental assays were performed in a randomized design with gibberellic acid (GA3, 100 ppm), polyethylene glycol (PEG 6000, -0.2 MPa) and PEG (-0.2 MPa) + GA3 (100 ppm) solutions during seed priming in four replicates. Seeds not submitted to priming treatments constituted control. Seeds physiological performance were evaluated immediately and even after 30, 60 and 90-days seed dry-storage. The data obtained in each experiment were submitted to variance analysis (ANOVA) adopting a confidence level of 95%. The effects of seed priming with PEG and GA3 during seed ageing were significant for germination variables of C. ochroleuca and C. spectabilis. During dry storage, seed viability of both species gradually decreased and the first symptoms were delayed seed germination, especially more evident for C. ochroleuca, even in primed or non-primed seeds. Afterwards, C. ochroleuca seeds previously GA3 primed had higher results of root protrusion (86%), hypocotyls elongation (76%) and complete seedlings (75%) than non-primed seeds (control). These findings shown a good potential of hormopriming to attenuate damage during the seed aging of C. ochroleuca.


Subject(s)
Crotalaria , Seedlings , Germination/physiology , Seeds/physiology
3.
Braz J Biol ; 83: e277437, 2024.
Article in English | MEDLINE | ID: mdl-38422256

ABSTRACT

The use of residues from coffee production to obtain biochar is a sustainable approach, which aims to minimize the environmental impact of these materials. In this study, the effect of adding coffee straw biochar on the physiological quality of lettuce and sorghum seeds was investigated. Thus, the objective of this work was to study the effect of adding different concentrations of coffee biochar in the substrate composition on the physiological quality of lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) seeds. The experimental design used was completely randomized, with five concentrations of biochar (0; 7.5; 15; 30 and 60%), conducted with four replications of 25 seeds. The use of biochar in the concentrations studied does not provide an increase in the average germination percentage and vigor of lettuce and sorghum seeds. The increase in the concentration of biochar caused less seed vigor, suggesting a toxic effect. For seed germination, there was no significant difference between lettuce and sorghum species, regardless of treatment. For the germination speed index, sorghum seeds have higher means, except for the treatment with the addition of 15% coffee straw biochar. Lettuce seeds have higher shoot length averages, except for treatment with 100% commercial substrate. The sorghum seeds have higher mean root length and dry mass than lettuce, regardless of the treatment.


Subject(s)
Charcoal , Germination , Sorghum , Coffee , Edible Grain , Lactuca , Seeds/physiology
4.
BMC Plant Biol ; 23(1): 665, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129795

ABSTRACT

Under natural conditions, most Hibiscus syriacus L. individuals form very few mature seeds or the mature seeds that do form are of poor quality. As a result, seed yield is poor and seeds have low natural germinability. These phenomena strongly hinder utilization of the excellent germplasm resources of H. syriacus. The study has shown that pollen activity and stigma receptivity were high on the day of anthesis, and the pistils and stamens were fertile. Pollen release and stigma receptivity were synchronous. But in styles following self and cross-pollination, pollen tube abnormalities (distortion and twisting of the pollen tubes) and callose deposition were observed. Cross-pollinated pollen tubes elongated faster and fewer pollen tube abnormalities were observed compared with self-pollinated pollen tubes. And during embryo development, abnormalities during the heart-shaped embryo stage led to embryo abortion. Imbalance in antioxidant enzyme activities and low contents of auxin and cytokinin during early stages of embryo development may affect embryo development. Therefore, a low frequency of outcrossing and mid-development embryo abortion may be important developmental causes of H. syriacus seed abortion. Nutrient deficiencies, imbalance in antioxidant enzyme activities, and a high content of abscisic acid at advanced stages of seed development may be physiological causes of seed abortion.


Subject(s)
Hibiscus , Seeds , Antioxidants , Hibiscus/physiology , Pollen , Pollination/physiology , Seeds/physiology
5.
PLoS One ; 18(10): e0292626, 2023.
Article in English | MEDLINE | ID: mdl-37862298

ABSTRACT

Damiana (Turnera diffusa Willd. ex Schult.) is a species of plant used in traditional Mexican medicine for its aphrodisiac properties. Although it has a high commercial demand, both nationally and internationally, its sexual propagation is not usual due to the low percentage of seed germination. It has been proposed that ants play an important role in germination, due to the presence of elaiosomes. Therefore, the objectives of this study were to characterize the seed morphology of T. diffusa for agronomic purposes, analyze their viability, and evaluate their germination by simulating environmental conditions of an ant nest. For the morphological characterization, 30 seeds were selected and evaluated for the variables of color, size, and weight. Viability was evaluated with a tetrazolium test using two lots of seeds collected in 2016 and 2017, with different concentrations and three exposure times at 40°C. The germination of T. diffusa was evaluated under three pre-germination treatments and nine germination treatments. The results of the study showed that the seeds of T. diffusa have an average size of 0.725 mm long and 0.182 mm wide; the color of the seeds varies from brown to black when ripe and yellowish white when immature. There are no significant differences in the viability percentage (60%) for seeds collected in 2016 and 2017 (p = 0.20). On the other hand, there are significant differences between all the pre-germination and germination tests analyzed. Seeds of T. diffusa have the highest percentage of germination (36%) with the presence of elaiosome and 500 ppm of GA3. The germination interval of the seeds occurs over a period of six to 39 days. The application of GA3 in the germination of the seeds indicates that they present a physiological latency which was inhibited at concentrations of 500 and 300 ppm.


Subject(s)
Ants , Turnera , Animals , Germination , Ants/physiology , Plants , Seeds/physiology
6.
Sci Total Environ ; 897: 165358, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37419353

ABSTRACT

Carex communities in most Yangtze-disconnected lakes have been degraded severely due to alterations in water level fluctuations. To explore the feasibility of restoring the lakeshore Carex communities through ecological regulation of water level, the present study selected the Yangtze-connected Qili Lake (the lakeshore was dominated by Carex) and the Yangtze-disconnected Wuchang Lake (the lakeshore was dominated by Zizania latifolia) as model systems, and analyzed the lakeshore seed bank characteristics and seed-related quantitative, morphological, and germination traits of three representative Carex species. According to the results, although Carex seed density in the Qili Lake seed bank was obviously higher than that in Wuchang Lake, their contribution to the total seed density in both lakes was extremely low, with no significant difference between the two lakes. The results indicate that restoration of the degraded Carex communities using existing seed bank in Yangtze-disconnected lakes exclusively through water level regulation is not feasible. In addition, the seed densities of aboveground parts of Carex cinerascens, Carex dimorpholepis, and Carex argyi in Qili Lake were 6.9 × 104, 45.1 × 104, and 3.6 × 104 seeds/m2, respectively, which can provide high numbers of seeds continuously for lakeshore Carex restoration. The results of seed germination experiments showed that light, burial depth, and their interaction had significant effects on seed germination of the three species, whereas water condition had a significant effect only on C. dimorpholepis seed germination. The average germination rates of the three Carex species were 16.63 %, 19.06 %, and 7.78 %, respectively. However, considering the high seed densities in the aboveground parts of the three species, there are considerable numbers of seeds that can be used for Carex restoration. Therefore, the restoration of Carex communities in lakeshore zones of Yangtze-disconnected lakes is still possible if water level regulation can be combined with natural or artificial seed supplementation.


Subject(s)
Carex Plant , Lakes , Water , Seeds/physiology , Dietary Supplements , China , Ecosystem
7.
Braz J Biol ; 83: e272616, 2023.
Article in English | MEDLINE | ID: mdl-37255203

ABSTRACT

The extracts of medicinal plants are used for the treatment of seeds in order to reduce the action of phytopathogens and increase the vigor of the seeds. Currently, computerized image analysis has been used to assess the physiological quality of seed lots. The objective was to evaluate the efficiency of the Vigor-S® software in the evaluation of the physiological quality of cowpea seeds treated with essential oils, comparing with a traditional test and the principal component analysis. Two cowpea cultivars were analyzed, BRS Tumucumaque and BRS Guariba, treated with doses of natural extracts of Alfavaca, garlic, horsetail, citronella and pyroligneous acid. The traditional method consisted of evaluations for germination, first germination count, seedling emergence, emergence speed index, accelerated aging, fresh matter and dry matter of seedling and the image analysis for: seedling length, growth index, uniformity index, vigor index, and germination. A Principal component analysis was applied to reduce the number of variables. Horsetail, Alfavaca and citronella extracts were efficient in increasing the physiological quality of the seeds of at least one cultivar. The Vigor-S® software proved to be efficient compared to traditional tests to assess the physiological quality of seeds. Principal Component Analysis is an ally to identify the best extracts and doses to be used. The image analysis method proved to be effective when compared to the traditional method and can therefore be used.


Subject(s)
Oils, Volatile , Vigna , Oils, Volatile/pharmacology , Seedlings/physiology , Seeds/physiology , Germination , Multivariate Analysis , Plant Extracts
8.
Am J Bot ; 110(3): 1-14, 2023 03.
Article in English | MEDLINE | ID: mdl-36571456

ABSTRACT

PREMISE: Changes to flowering time caused by climate change could affects plant fecundity, but studies that compare the individual-level responses of phenologically distinct, co-occurring species are lacking. We assessed how variation in floral phenology affects the fecundity of individuals from three montane species with different seasonal flowering times, including in snowmelt acceleration treatments to increase variability in phenology. METHODS: We collected floral phenology and seed set data for individuals of three montane plant species (Mertensia fusiformis, Delphinium nuttallianum, Potentilla pulcherrima). To examine the drivers of seed set, we measured conspecific floral density and conducted pollen limitation experiments to isolate pollination function. We advanced the phenology of plant communities in a controlled large-scale snowmelt acceleration experiment. RESULTS: Differences in individual phenology relative to the rest of the population affected fecundity in our focal species, but effects were species-specific. For our early-season species, individuals that bloomed later than the population peak bloom had increased fecundity, while for our midseason species, simply blooming before or after the population peak increased individual fecundity. For our late-season species, blooming earlier than the population peak increased fecundity. The early and midseason species were pollen-limited, and conspecific density affected seed set only for our early-season species. CONCLUSIONS: Our study shows that variation in individual phenology affects fecundity in three phenologically distinct montane species, and that pollen limitation may be more influential than conspecific density. Our results suggest that individual-level changes in phenology are important to consider for understanding plant reproductive success.


Subject(s)
Flowers , Pollination , Flowers/physiology , Pollination/physiology , Reproduction/physiology , Pollen , Seeds/physiology , Seasons
9.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2363-2370, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36131651

ABSTRACT

This study aimed to examine the responses of persistent soil seed bank to future precipitation reduction of global climate change in the forest-steppe ecotone of Hulunbuir. Samples of soil seed bank were collected from 0-10 cm soil layer along a precipitation gradient. We examined the density, species composition, diversity of seed bank and their relationship with vegetation. Structural equation model was used to explore the direct impact of annual precipitation on soil seed bank and the indirect impact through vegetation, soil nitrogen, soil phosphorus, and soil pH. The results showed that seed bank density and species richness were negatively correlated with annual precipitation. The species diversity of soil seed banks in grasslands was higher than that in forests. The similarity between soil seed bank and vegetation was generally low. The results of structural equation model showed that the effects of annual precipitation on seed bank density and species richness were negative, with the standard path coefficients of -0.051 and -0.122, respectively. The direct effect of annual precipitation on seed bank density and species richness were positive. Precipitation had indirect and positive effect on seed bank density and species richness through soil nitrogen, a significantly indirect negative effect on seed bank species richness through soil pH and soil available phosphorus, and a significantly indirect negative effect on seed bank density through soil pH. The reduction of precipitation under furture climate change might alter the hedging strategies of plants. The persistent soil seed bank in the forest-steppeecotone had a potential buffering effect against future precipitation reduction.


Subject(s)
Seed Bank , Soil , Ecosystem , Forests , Nitrogen , Phosphorus , Seeds/physiology , Soil/chemistry
10.
Am J Bot ; 109(11): 1730-1740, 2022 11.
Article in English | MEDLINE | ID: mdl-36088615

ABSTRACT

PREMISE: In many flowering plants, flowers contain more ovules than fruits have seeds. What determines which ovules become seeds? When photosynthates are limited, as may happen when plants lose leaf area to herbivory, fewer fertilized ovules become seeds. METHODS: Greenhouse-grown ramets of distinct individuals of a perennial herbaceous legume were manually defoliated to various levels determined in the field, then self- or cross-pollinated. For each seed produced, we recorded its position in the fruit and its mass. From a subset of seeds from different treatments and positions in the fruits, we grew seedlings and measured their dry mass. RESULTS: Ovules were aborted more frequently in fruits from flowers that were self-pollinated and from those on plants with higher levels of defoliation. Ovules in the basal portion of the fruits were more likely to be aborted than those at the stigmatic end; this pattern was most pronounced for fruits after self-pollination with high levels of defoliation. Total number of seeds produced and seed mass per pod were greatest in cross-pollinated fruits after no or low levels of defoliation. Mean individual seed mass was greater for fruits with fewer seeds, indicating a trade-off between seed number and seed mass. Seedling dry mass (a measure of vigor) was greatest for seeds in the middle positions of fruit produced by cross-pollination after severe herbivory; no positional differences were seen for seeds from self-pollinated fruits. CONCLUSIONS: Observed locations of seed abortion may have been selected not only by defoliation, but in part by propensity for dispersal, while positional differences in seedling vigor may be related to seed size and differential maternal allocation based on pollination treatment and leaf area lost.


Subject(s)
Fabaceae , Seeds/physiology , Pollination/physiology , Pollen/physiology , Flowers/physiology , Seedlings , Plants
11.
BMC Plant Biol ; 22(1): 321, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787259

ABSTRACT

BACKGROUND: Plants are greatly affected by pedoclimatic conditions. They can alter the physiology of plants and affect seeds agro-morphological and physicochemical characteristics. It is therefore conceivable that tree species which have a potential as oil/fat producing plants are affected by pedoclimatic conditions variability. This study aims to evaluate the effect of pedoclimatic conditions variation on the physicochemical characteristics and the agro-industrial potential of three oilseeds fruits  from Burkina Faso: Balanites aegyptiaca, Sclerocarya birrea and Lannea microcarpa. RESULTS: A characterization of the size, chemical composition and weight of 100 seeds of the three native oilseeds from Banfora (Sudanian zone), Ouagadougou (Sudano-Sahelian zone) and Ouahigouya (Sahelian zone) was carried out. Results showed that seed size, seed weight and chemical composition varied significantly according to the pedoclimatic zone of the collection  significant correlations between seed size, 100-seed weight, total ash and also for seed oil content and moisture have also been revealed. Principal component analysis (PCA) associated increases in seed size and total ash content with high annual rainfall and low temperature areas, while increases in seed oil content were associated with low rainfall and high annual temperature areas. CONCLUSION: Seed size and seed weight were associated with high rainfall and low temperature, while high temperature and low rainfall were associated with oil accumulation in the seeds. However, the limit number of replications of physicochemical characteristics analyses, a limitation of the study, does not allow an exhaustive conclusion to be drawn from the study.


Subject(s)
Fruit , Seeds , Burkina Faso , Plant Oils/analysis , Plants , Seeds/physiology , Trees
12.
Plant Cell Environ ; 45(4): 1315-1332, 2022 04.
Article in English | MEDLINE | ID: mdl-35064681

ABSTRACT

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.


Subject(s)
Beta vulgaris , Abscisic Acid/metabolism , Beta vulgaris/genetics , Germination/physiology , Plant Dormancy/genetics , Seeds/physiology
13.
Sci Rep ; 11(1): 22785, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815450

ABSTRACT

In this research, two common apple seed cultivars Viz: 'Golden Delicious' (GD) and 'Red Delicious' (RD) of Northern Himalayan region were characterized for physical, techno-functional, microstructure, thermal, and rheological properties. Seeds showed a significant difference in width, arithmetic, and geometric mean diameters, volume, and surface area. Proximate analysis results revealed that seed flours have high oil content (> 20%) and are potentially rich sources of protein (> 40%). Color analysis of flours indicated their satisfactory whiter color with higher brightness values (L* ˃ 75), resulting from the reduced particle size which allows greater light penetration and relatively lower a* (< 1.5) and b* (< 11) values. Techno-functional attributes including water/oil absorption capacity, emulsifying capacity, and emulsion stability were significantly higher in RD than GD flour. There was also a significant difference in the average particle size of seed flours. Flour micrographs indicated the presence of oval/spherical-shaped starch granules embedded in dense protein matrix while, Differential Scanning calorimeter (DSC) revealed exothermic transition enthalpies for seed flours. Additionally, seed flours depicted high elastic modulus (G'), suggesting their suitability for modifying food texture. It was concluded that apple seeds exhibit significant potential for use in formulating protein-enriched foods while contributing to reducing industrial wastage.


Subject(s)
Flour/analysis , Malus/anatomy & histology , Malus/physiology , Rheology , Seeds/anatomy & histology , Seeds/physiology , Chemical Phenomena , Malus/chemistry , Particle Size , Plant Oils/analysis , Plant Proteins/analysis , Seeds/chemistry
14.
Sci Rep ; 11(1): 20043, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625603

ABSTRACT

Cross-pollination can improve fruit yield, fruit size and nutritional quality of many food crops. However, we rarely understand what proportions of the crop result from self- or cross-pollination, how cross-pollination affects crop quality, and how far pollen is transported by pollinators. Management strategies to improve pollination services are consequently not optimal for many crops. We utilised a series of SNP markers, unique for each cultivar of avocado, to quantify proportions of self- and cross-paternity in fruit of Hass avocado at increasing distances from cross-pollen sources. We assessed whether distance from a cross-pollen source determined the proportions of self-pollinated and cross-pollinated fruit, and evaluated how self- and cross-paternity affected fruit size and nutritional quality. Avocado fruit production resulted from both self- and cross-pollination in cultivar Hass in Queensland, Australia. Cross-pollination levels decreased with increasing distance from a cross-pollen source, from 63% in the row adjacent to another cultivar to 25% in the middle of a single-cultivar block, suggesting that pollen transport was limited across orchard rows. Limited pollen transport did not affect fruit size or quality in Hass avocados as xenia effects of a Shepard polliniser on size and nutritional quality were minor.


Subject(s)
Fruit/chemistry , Genetic Markers , Persea/physiology , Pollen/physiology , Pollination , Polymorphism, Single Nucleotide , Australia , Persea/genetics , Persea/growth & development , Reproduction , Seeds/genetics , Seeds/growth & development , Seeds/physiology
15.
Plant J ; 108(4): 1162-1173, 2021 11.
Article in English | MEDLINE | ID: mdl-34559918

ABSTRACT

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Zinc/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Homeostasis , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Stress, Physiological
16.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34495331

ABSTRACT

Plant sexual and asexual reproduction through seeds (apomixis) is tightly controlled by complex gene regulatory programs, which are not yet fully understood. Recent findings suggest that RNA helicases are required for plant germline development. This resembles their crucial roles in animals, where they are involved in controlling gene activity and the maintenance of genome integrity. Here, we identified previously unknown roles of Arabidopsis RH17 during reproductive development. Interestingly, RH17 is involved in repression of reproductive fate and of elements of seed development in the absence of fertilization. In lines carrying a mutant rh17 allele, development of supernumerary reproductive cell lineages in the female flower tissues (ovules) was observed, occasionally leading to formation of two embryos per seed. Furthermore, seed coat, and putatively also endosperm development, frequently initiated autonomously. Such induction of several features phenocopying distinct elements of apomixis by a single mutation is unusual and suggests that RH17 acts in regulatory control of plant reproductive development. Furthermore, an in-depth understanding of its action might be of use for agricultural applications.


Subject(s)
Arabidopsis Proteins/genetics , DEAD-box RNA Helicases/genetics , Seeds/genetics , Apomixis , Arabidopsis , Arabidopsis Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Endosperm/genetics , Endosperm/physiology , Mutation , Ovule/genetics , Ovule/metabolism , Ovule/physiology , Pollen/genetics , Pollen/metabolism , Pollen/physiology , Seeds/metabolism , Seeds/physiology
17.
Plant Cell Environ ; 44(7): 2200-2210, 2021 07.
Article in English | MEDLINE | ID: mdl-33866576

ABSTRACT

Heat stress coinciding with reproductive stage leads to a significant loss in reproductive organs viability, resulting in lower seed-set and crop productivity. Successful fertilization and seed formation are determined by the viability of male and female reproductive organs. The impact of heat stress on the male reproductive organ (pollen) is studied more often compared to the female reproductive organ (pistil). This is attributed to easier accessibility of the pollen coupled with the notion that the pistil's role in fertilization and seed-set under heat stress is negligible. However, depending on species and developmental stages, recent studies reveal varying degrees of sensitivity of the pistil to heat stress. Remarkably, in some cases, the vulnerability of the pistil is even greater than the pollen. This article summarizes the current knowledge of the impact of heat stress on three critical stages of pistil for successful seed-set, that is, female reproductive organ development (gametogenesis), pollen-pistil interactions including pollen capture on stigma and pollen tube growth in style, as well as fertilization and early embryogenesis. Further, future research directions are suggested to unravel molecular basis of heat stress tolerance in pistil, which is critical for sustaining crop yields under predicted warming scenarios.


Subject(s)
Flowers/physiology , Heat-Shock Response/physiology , Pollen/physiology , Flowers/anatomy & histology , Gene Expression Regulation, Plant , Pollination , Seeds/physiology , Thermotolerance
18.
J Sci Food Agric ; 101(4): 1454-1466, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32851662

ABSTRACT

BACKGROUND: Lentil is an important nutritionally rich pulse crop in the world. Despite having a prominent role in human health and nutrition, it is very unfortunate that global lentil production is adversely limited by drought stress, causing a huge decline in yield and productivity. Drought stress can also affect the nutritional profile of seeds. Silicon (Si) is an essential element for plants and a general component of the human diet found mainly in plant-based foods. This study investigated the effects of Si on nutritional and sensory properties of seeds obtained from lentil plants grown in an Si-supplied drought-stressed environment. RESULTS: Significant enhancements in the concentration of nutrients (protein, carbohydrate, dietary fibre, Si) and antioxidants (ascorbate, phenol, flavonoids, total antioxidants) were found in seeds. Significant reductions in antinutrients (trypsin inhibitor, phytic acid, tannin) were also recorded. A novel sensory analysis was implemented in this study to evaluate the unconscious and conscious responses of consumers. Biometrics were integrated with a traditional sensory questionnaire to gather consumers responses. Significant positive correlations (R = 0.6-1) were observed between sensory responses and nutritional properties of seeds. Seeds from Si-treated drought-stressed plants showed higher acceptability scores among consumers. CONCLUSION: The results demonstrated that Si supplementation can improve the nutritional and sensory properties of seeds. This study offers an innovative approach in sensory analysis coupled with biometrics to accurately assess a consumer's preference towards tested samples. In the future, the results of this study will help in making a predictive model for sensory traits and nutritional components in seeds using machine-learning modelling techniques. © 2020 Society of Chemical Industry.


Subject(s)
Lens Plant/chemistry , Lens Plant/drug effects , Silicon/pharmacology , Antioxidants/analysis , Carbohydrates/analysis , Dietary Fiber/analysis , Droughts , Humans , Lens Plant/physiology , Nutritive Value , Seeds/chemistry , Seeds/drug effects , Seeds/physiology , Stress, Physiological , Tannins/analysis , Taste
19.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33057654

ABSTRACT

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Subject(s)
Autophagic Cell Death , Brassica napus/growth & development , Caspases/metabolism , Plant Proteins/metabolism , Pollen/physiology , Seeds/growth & development , Brassica napus/physiology , Gene Expression Regulation, Plant , Seeds/physiology , Stress, Physiological
20.
Dokl Biol Sci ; 493(1): 128-131, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32894427

ABSTRACT

The influence of pre-sowing treatment of spring wheat seeds with combined use of plant growth hormones and sorption preparations based on bentonite-humate mixtures on seeds germination and their development in soils was studied. In some cases, the combined use of plant growth hormones and the sorption preparation (CB-H-BYA) that can decrease the intake of allelotoxins from soil to seeds allows noticeably increasing the efficiency of plant growth hormones used for pre-sowing treatment. The inclusion of cytokinins (6-benzylaminopurine, kinetin, and forchlorophenuron) into the sorption preparation (CB-H-BYA) had markedly different effects on seeds germination. The addition of Polysorbate 20 to the sorption preparation (CB-H-BYA) leads to an increase in the effectiveness of its action on seed germination.


Subject(s)
Plant Growth Regulators/pharmacology , Seedlings/growth & development , Seeds/drug effects , Triticum/growth & development , 4-Aminobenzoic Acid/pharmacology , Agriculture/methods , Bentonite , Benzyl Compounds/chemistry , Fatty Alcohols/pharmacology , Germination/drug effects , Germination/physiology , Kinetin/chemistry , Phenylurea Compounds/chemistry , Purines/chemistry , Pyridines/chemistry , Seeds/physiology , Soil/chemistry , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL